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' 1. Introduction 

During this reporting period effort has been directed to- 

wards studies of seismic velocity models for the moon and the 

computation of theoretical seismograms to study the lunar seismic 

reverberation. The possible presence of a low-velocity uncon- 

solidated surface debris layer has implications for the inter- 

pretation of lunar active seismic experiments which are planned 

for traverse geophysics in the future Apollo missions. 

We have also concentrated on some aspects of the thermal 

history of the moon. The thermal history of the moon is vital 

to understanding the internal stress condition and seismicity, 

the chemical differentiation history, the electrical and magnetic 

properties of the interior, the sources of surface lavas and. 

tectonic features and the gravitational field. Recent advances 

in the theory of natural convection are showing great promise . 

for the understanding of lunar internal temperatures. 
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2. Lunar Seismic Investigations 

A major objective in interpreting lunar seismic data is 

c 

c 

to obtain a model for the internal structure of the moon. Any 

description of the bulk properties of the moon is dependent on 

knowledge of the variation of seismic velocities with depth. 

It is worth examining the question at this time of our current 

knowledge of the internal structure of the moon in light of 

the recently obtained seismic data from the Apollo 11 and 12 

missions and the related physical properties of rocks which have 

been measured on some of the returned lunar samples. 

Seismic data are usually combined with data on the physical 

and chemical properties of rocks, since seldom is a unique deter- 

mination of material composition made solely from seismic data. 

Seismic velocity characteristically depends on a large number of 

factors such as mineralogical composition, mean atomic weight, 

temperature, pressure, grain size, porosity and the presence of 

small cracks. 

In the moon, however, it is apparent that the overiding 

parameter controlling the variation of seismic velocity in the 

upper 20km or so is the presence of cracks. This is a condition 

unlike that found on earth. 

Figure 1 shows the seismic velocities measured as a function 

of pressure on some of the returned lunar samples. The principal 

feature to note is the rapid increase in seismic velocity over 

the first 2 kbar or so, equivalent to a depth of about 4 0  km in 



the moon. We can now proceed to examine the reasons for such a 

variation of seismic velocity. It is a simple matter to estimate 

the variation of velocity with depth in the moon. Assuming homo- 

geneity this variation can be written as 

av av 
a4 aPcracks 

+ -1141 + (-) AP 

where V = velocity, P = pressure, T = temperature, 4 = porosity 

and r = radius. For a self-gravitating sphere of density 3.34 

gm/cm3 in hydrostatic equilibrium we can take pressure to vary 

with radius as 

2 P = 4 7 . 0  [ l -x  1 kbar 

where x is the normalized radius. 
av For rocks (F) is typically of the order of 1 x lo-* 

T 
km/sec/kbar once pressures of the order of 10 kbar or so are 

reached. Temperature acts in opposition to pressure and a 

reasonable estimate for the temperature coefficient is -3 to 

- 4  x km/sec/OC. The thermal gradient in the lunar interior 

is, or course, unknown but it is difficult to imagine that it 

could exceed 2 - 4OC/krn in the upper 100 km of the Moon. That 
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is, the maximum variation in seismic velocity that could be 

. 

.' 

produced in the outer 50 km of the lunar interior from thermal 

considerations could not exceed 8 x lo-* km/sec. It is also a 

simple matter to show that the contribution to variation in 

seismic velocity produced by a decrease in spherical porosity 

is small. 

On the other hand, the contribution from the closing of 

cracks - far exceeds any of the above mentioned factors. Data 

from - dry granites suggests the following 

0 - 200 bars (%4 km) % 12 km/sec/kbar 

200 bars - 1 kbar (%20  km) % 1 km/sec/kbar 

1 - 3 kbar ( ~ 5 5  km) Q .06 km/sec/kbar 

Thus, we see that easily the dominant factor is the closing of 

cracks. 

We can now proceed to test the hypothesis of the closing of 

cracks being the main contributor to the variation of velocity. 

variation is predicted using the pressure variation as measured 

in a dry granite. This is not to imply that the moon is composed 

of granite but we have merely utilized the empirical pressure 

variation. We can see that the predicted velocity variation is 

close to that measured in the lunar samples so we can anticipate 

that we will have agreement with the observed travel time data. 
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Also shown in Figure 1 is a layered velocity model containing 

a discontinuity at 5 km where the velocity jumps from 2.9 to 4.7 

km/sec. 

Figure 2 shows the excellent agreement with the limited 

travel-time data and we can make the following firm conclusions 

1. There is a strong velocity gradient or a velocity discontinuity 

in the upper 5 km or so of the moon reaching to a velocity of 

4.7 km/sec at 5 km. Detailed refraction surveys would be 

needed to delineate between these two models. 

2. It is the mechanical state, i.e. the closing of cracks, of 

the rocks which is controlling the variation of seismic velocity 

in the outer 20 km or so of the moon and not composition or 

rock type. 

3 .  Because the average velocity is low - of the order of 2 - 3 

km/sec in the upper 5 km of the moon large amounts of perma- 

frost in the maria seem precluded. Pure ice has a velocity 

of about 3.7 km/sec but permafrost velocities range from about 

5.1 km/sec to 5.8 km/sec. In order to preserve the observed 

travel times large amounts of permafrost are not possible. 

4 .  The seismic velocity approaches 6.5 - 7 km/sec, a value appro- 
priate for ultrabasic racks, at depths of 40  km or so in the 

moon. 

Now what can be said about the lunar seismic reverberation which 

followed the LM and SIVB impacts. Possible propagation mechanisms 

fall into two general categories. Dispersion effects where coher- 

ent waves propagate at differing group velocities dependent on 
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wave length and scattering effects where the effective path lengths 

are increased owing to numerous reflections from acoustic boun- 

aries, or a comgination of both. 

account that a surface impact source would generate most of its 

seismic energy in the form of surface waves - Rayleigh waves. 

Any explanation must take into 

We have examined the possibility of a shallow layered wave- 

guide consisting of the unconsolidated surface debris layer (the 

lunar regolith) possessing a very low seismic wave velocity and 

which overlies the more competent although probably fractured 

basement rocks. 

mode Rayleigh wave group velocity curve where the group velocity 

decreases from a value of about 1.6 km/sec to a minimum value of 

16 m/sec over the period range from 1.6 to 1.4 seconds (Fig. 3 ) .  

Such a model predicts a very steep fundamental 

For this model surface waves for the S-IVB impact distance 

of 135 km would have a predicted duration of 140 minutes. Given 

such a theoretical dispersion curve it is also possible to com- 

pute the impulse response seismogram of the wave media. Figure 4 

shows the smoothed predicted envelope for this model compared with 

the observed envelope for the S-IVR impact signal. The agreement 

is not satisfactory for the early part of the seismic signal but 

does show that dispersion could contribute to the observed long 

duration of the observed seismic signal. Data on possible near 

surface layering required to resolve this question with certainty 

will have to await results from the seismic refraction experiments 

planned for future lunar missions or man-made impacts at closer 

ranges. 
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3 .  Lunar Thermal State 

Work on the lunar thermal state can be divided into four 

parts. 

(i) 

(ii) 

An examination of the material properties of the moon which 

leads almost inevitably to the conclusion that a relatively 

undifferentiated moon would become thermally unstable with- 

in a billion years of its formation. The result would be 

finite amplitude convection which would strongly control 

subsequent thermal evolution of the lunar interior. 

Basic theoretical and experimental studies of convection 

in a material such as the lunar interior which has strongly 

temperature dependent viscosity. We have shown theoretically 

that the transition from a stable to an unstable state does 

not involve an oscillatory situation. We have also experi- 

mentally measured the heat flow in a simple convection cell 

with strong viscosity stratification and find that with an 

appropriate definition of the Rayleigh number, the heat flow 

is the same as in a cell with constant viscosity. This very 

fundamental result permits convective heat transport in 

planets to be estimated from constant viscosity results. 

(iii) A theory of finite amplitude convection in an internally 

heated self-gravitating sphere has been used to study the 

internal lunar temperatures. Four points can be made: 

a)  Rheology rather than heating rate is the most important 

factor. 
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b) if Herring-Nabarro creep is applicable, general melting 

of the lunar interior is unlikely. Central temperatures 

should range between 1200 and 1800'k. 

c) Non-newtonian creep will probably lower these temper- 

atures. 

d) A thermal near-catastrophe occurs near the stagnation 

point above a rising plume. 

maximum which is 150-250°k above the average internal tem- 

perature can produce a lenticular zone of partial melting 

at a depth of 200 to 600 km. 

The resultant temperature 

(iv) The implications of the lenticular partially melted zone 

for lunar evolution have been considered. One possible 

sequence of events is: 

a) The moon is formed "cool" 

b) Initial radioactivity raises the internal temperature 

rather uniformly to about 1200Ok in about 10 years when 9 

the rapidly decreasing internal viscosity ensures the onset 

of convection. 

c)  he partially melted zap forms over the upwelliwj of 

the lSt axisymmetric mode. This is the most unstable mode. 

d) The melt percolates to the surface to form the maria 

taking radioactive elements with it. 

e) After several times the cell overturn time of the order 
8 of 10 years, most radioactivity is removed leading to cell 

death. 
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f) As the cell dies its radius decreases so that later 

surface lavas would have a deeper origin than earlier 

lavas. 

g) The highly assymmetrical nature of the differentiation 

process shifts the lunar center of mass along the axis of 

symmetry of the convection cell. Decay of lunar angular 

momentum by tidal friction will eventually leave the orig- 

inal convection axis aligned with the earth-moon axis. 

Besides further basic research on finite amplitude convection, 

experimental studies of the rheological properties of rocks at 

moderate confining pressures and very low non-hydrostatic stresses 

is very desirable. In addition, the establishment of a magneto- 

meter on the lunar farside can give first order information on 

whether convection was important in lunar evolution. . 

4 .  Appendices 

Two appendices are included. The first is a paper on the 

theoretical results described in section 2 (ii) and the second 

is another paper discussing points 2 (i) , (iii) and (iv). The 

experimental results in 2 (ii) are further described in the 

second appendix and will be the subject of a future paper. 
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Abstract 

. 

The marginally stable state for a fluid with arbitrary 

viscosity stratification and a linear unstable temperature 

gradient is stationary in time. However, viscosity stratifi- 

cation may cause an oscillatory instability with a stable 

temperature gradient. Analogous theorems hold in a sphere 

heated or cooled within. 
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1. Introduction 

There is now considerable evidence for convective motions 

in the earth's upper mantle (see papers in Hart, 1969 or Phinney, 
1968). Furthermore, thermal instabilities may be important for 

the internal thermal states and gravitational fields of the 

Moon and planets (Tozer, 1967; Runcorn, 1967). All the creep 

laws currently proposed for planetary interiors are strongly 

temperature and pressure dependent (Turcotte and Oxburgh, 1969; 

Weertman, 1970). Therefore,it is of considerable interest to 

consider the thermal instability of a fluid with strong viscosity 

stratification. The unsettled question of whether this fluid 

is newtonion for finite amplitude convection (Weertman, 1970) 

does not arise in this context because at the onset of convection 

the strain rate is so low that the newtonian assumption is bound 

to hold. 

Schubert, Turcotte and Oxburgh (1969) discuss the stability 

of a fluid with a strong increase of viscosity with depth heated 

from below. They assume that the marginally stable state is a 

stationary pattern of motions,that is, that the principle of the 

exchange of stabilities holds. In this note, we prove this,very 

fundamental assumption both for the case discussed by Schubert 

and for the closely analogous case of a self-gravitating 

sphere heated within. Schubert's model is probably most use- 

ful in the Earth and Venus where high pressures cause a sharp 

viscosity increase in the lower mantle, while the spherical 



case is more representative of the Moon and Mars. 

For small perturbations with time dependence eat, the 

principle of exchange of stabilities holds if the imaginary 

part of u, u ,is zero when the real part, ur, is greater than 

or equal to zero. This is first proved for a constant property 

fluid heated from below by Pellew and Southwell (1940). They 

show that the momentum and temperature equations imply 

i 

where u* is the complex conjugate of u and I1 to I4 are posi- 

tive definite integrals. The imaginary part of (1) is 

u (I1 + 13) = 0 i 

which immediately shows that ui = 0. 

to vary affects only 12. Therefore a sufficient condition fo r  

the exchange of stabilities to hold in the stratified viscosity 

case is that I2 be real; 

Allowing the viscosity 

Davis (1969) has used a general perturbation expansion to 

prove the exchange of stabilities in situations deviating from 

Pellew and Southwell's. However, his technique is not very 

helpful in the geophysical context of very high Prandtlnumber 

since its radius of convergence approaches zero. Furthermore, 

the perturbation operator representing variable viscosity does 

not belong to the class considered by Davis. 
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2.Heating from below 

Assuming constant properties except for the vertical 

viscosity gradient and using the Bousinesque approximation, . 

the perturbation equations in an infinite horizontal plane ' 

layer with fixed top and bottom boundary temperatures and 

coordinate system (x, y, z) become A A h  

n A n aq + Vp = agTz + V V 2 q  + Dv[V(z*q) 
I r r *  CI, * r u  

+ Z*Vq] 

v*q = 0 
e ,  

( 3 )  

where (q, T )  = (u, T)eat 
L N 

and u and T are the velocity and temperature perturbations. 

The gravitational acceleration is -gz; CL and K are the coef- 
I* 

A 

ficient of expansion and heat diffusivity; p is the pressure 

perturbation divided by the density; - B  is the constant super- 

adiabatic gradient of the b a s i c  conduction temperature p r d F 1 e ,  Tg; 

B is positive for the unstable situation with heating from below; 

is the viscosity, which through its dependence on the temper- 

ature and pressure of the basic equilibrium, is a function only 

of z ;  and D = d/dz. 

The boundary conditions are q and T bounded for large x 
A and y and z * q  = 0 ,  p = 0 ,  'I = 0 on a free boundary and q = 0, 

T = 0 on a rigid boundary. Equation ( 3 )  further implies 
w U 
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A 
D(2.q) = 0 on a rigid boundary while the vanishing of the stress 

N 

A A at a free surface implies D(x*q) = D(y-q) = 0. 
N N 

Now take the dot product of ( 2 )  with q* and multiply the 
ru 

complex conjugate of ( 4 )  by T and integrate both equations over 

the fluid layer. We obtain 

and 

B lT(G*mdv r* = u*  1 1 ~ 1 ~  dv - K I TV2T*dv. 
Since C1,g,K and B are positive constants, ~(z-q*)dv can be 

eliminated giving equation (1) where I1 and I2 are B times 
I * _  

the first and second integrals on the right of (5) and I3 and 

I4 are ag times the integrals on the right of (6) Gauss' 

theorem, V-q = 0 and either the rigid or free boundary con- 

ditions then imply that 
" 

q**Vp dv = I V*pq* dv = 
f f N  

S 

A 
where s is the boundaries and n is the outward unit normal. 
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. 
Likewise 

1 Du q**V(z*q)dv h = - I D2ulz A q12dv. 
U f f N  N 

A separation of variables of the form 

where f satisfies (Chandrasekhar, 1961, Ch. 2) 

with a2>0 and 

gives 

Integrating the term with D2Q by parts and using the boundary 

conditions, we have 
rv 



. 
. 

A8 

Thus I2 becomes 

which is clearly real. Similarly 

which also real. The exchange of stabilities therefore holds 

for arbitrary viscosity stratification in a fluid layerhtted 

from below. 

Finally it is of interest to consider what happens if 

B < O ,  that is if the temperature increases upwards (stable). 

Then I1<0 and ai can be non-zero. The real part of (1) gives 

0 = (14 - 1 2 ) / / ( I i  - A S /  l - - \  rn&..- 1 1 1 U 3 ,  if D2” W ’ O ,  we have I Q t O  and r 
2 

ar<O and the fluid is stable. 

it is possible to have a positive growth rate. 

On the other hand, if D v c O ,  

Consequently 

viscosity stratification may destabilize an otherwise stable 

equilibrium. 

3 .  Sphere heated within 

If B is replaced by Bz and g by gz, all the arguments in 

the preceeding section remain unchanged. Thus the self-gravitating, 
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uniformly heated sphere where g = yr and !To = is 

clearly analogous to the plane layer heated from below. The 

equations in spherical coordinates (r,e,$) equivalent to (2) 

and ( 4 )  are 

-Br 

A A A  

uq + vp = a y ~ r  + vv2q 
AI A ) N  N 

and U T  - B(r.q) = K V ~ T ,  

where D now denotes d/dr. 
e #  

The boundary conditions at the sur- 
face of the sphere are the same as the layer with A r replacing 

A 
z .  At the center of the sphere, q, Dq and T are finite. - c 

Consider first the expression multiplied by Du. The 

volume integral over the sphere of the dot product of q* and 

the last two terms is clearly the real quantity 
.- 

11- uJlng .: ~ a i i s s '  theorem, the second term becomes 

h I N 

A 
Dvq**V(r*q)dv = - D2v(r*q12dv, J .sr 

and as before, the first term will cancel part of the integral 

of vq**v2q. 
e N 

The variables may be separated (Chandrasekhar, 1961, Ch 6) 



with 

where the 

that for the spherical surface S, 

are surface spherical harmonics normalized so 
R 

lYRl ds = 1 I m 2  
S 

Then r2V2 = Dr2D - 11(11+1) 

and we have 

N 

Integrating by parts 

the boundedness of Q* and 
N 

- j v[r2 

The last term cancels the 

= 1” [Q**Dr2DQ - R(R+l) lQ1 2]dr. 
N P 

using the boundary conditions and 

DQ as r+O, we obtain 
h) 

DQ17 + R(R+l) [Q12] - I DvQ**DQ r2dr 
+ E ,  

first term in the expression multiplied 

by Du. 

then leads to the final results: 

A straight forward integration by parts of the 8 equation 



. 
I .  

All 

I .  

I2 and 1 4  are clearly real and again the exchange of stabilities 

ho;Lds. 

Note that f o r  1 2  to be positive definite, not only must 

D2v be positive but also Dv. 

gradient BcO, an oscillatory instability may be possible if 

either D 2 v  or D v  is negative. 

Thus for the stable temperature 

This research was supported by the National Aeronautics 

and Space Administration under grant number NGL-05-020-232. 
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Abstract 

An undifferentiated moon is very likely to be thermally 

unstable. 

heat flow processes in the lunar interior. The steady state 

internal temperature of the moon is strongly stabilized by the 

rheological proporties of the lunar material. Present estimates of 

lunar rheology millitate against melting in an initially cool lunar 

interior except in a lenticular hot region over an upwelling.This par- 

tially melted zone can account for the outpouring of mare material 

on only one hemisphere of the moon at about one billion years 

after the moon's formation. The removal of radioactive elements 

with the partial melt would lead to cell death and a cesession of 

The resultant finite amplitude convection dominates 

widespread volcamism several hundred million years later. The 

assymmetric differentiation process also produces a displacement 

of the lunar center of mass along the cell axis and spin-orbit 

coupling and tidal friction will cause the convection axis to align 

with the earth-moon axis. 
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I. INTRODUCTION 

Convection in planetary interors at temperatures below the 

melting point has enjoyed a rather bad reputation. This is 

presumably because of the difficulty of solving the problem 

of finite amplitude convection. Not only are you dealing with 

a non-linear system, but you must also contend with such exotic 

effects as strongly temperature dependent viscosity and perhaps 

a non-newtonian stress-strain rate relation. However, as we 

shall see, thermal instabilities seem fairly likely in planetary 

bodies such as the moon, and considerable insight can be gained 

into certain restricted aspects of the problem by approximate 

techniques. One such aspect is the average thermal state of 

the interior. This was first pointed out by Tozer (1967). The 

calculations presented in this paper are similar to his. I will 

discuss both theoretical and experimental justification for 

his method and further consider basic implications of convection 

for the moon's thermal history. 

II ASSUMPTIONS AEOVT THE MOON'S INTERIOR 

I have made several very basic assumptions about the material 

inside the moon which need discussion. The most important is 

that from a very long term point of view the solid lunar material 

behaves like a fluid with a newtonian viscosity. This viscosity 

is exponentially dependent on temperature in such a way that the 

material gets softer as it heats up. In particular, I use various 

diffusion (Herring-Nabarro) creep laws proposed for the earth's 
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mantle. 

Five Herring-Nabarro creep laws are shown in Table 1. 

This type of creep implies a linear stress ( a )  - strain rate 
( E )  relation and the concept of viscosity (n) is well defined. 

Except for model 1, which I believe has an unrealistically 

large grain size (see Turcotte and Oxburgh 1969a),all the models 

are plausible. The basic difference between them is the activ- 

ation energy E which controls the rate of change of viscosity 

with temperature and the ratio T/Tm (temperature over melting 

temperature, which is arbitrarily taken to be 1800OK) at which 

a viscosity of 1021 poise is reached. This viscosity value is 

characteristic of the earth's upper mantle (McConnell, 1968) 

and is obtained from measurements of the post glacial uplift of 

such areas as Fennoscandia and Lake Bonneville. As yet no 

similar measurement exists for the deep interior of the moon. 

Models 1 and 2 represent a lower bound to the activation energy, 

while model 5 represents an upper bound (Gordon, 1965). 

Herring-Nabarro creep has been strongly attacked recently 

by Weewtman (1970) and something needs to be said in its defense. 

First of all, Herring-Nabarro creep is justified below some 

critical stress, uc, above which a creep mechanism such as 

dislocation glide will take over. The strain rates for the 

two processes are 

( Y  D Herring-Nabarro: iH = (-) 
L2 
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Dislocation Glide: iC, = a ' D  (:) 2 (&) 

where D is the diffusion coefficient for vacancies, L is the 

grain size, Q is the atomic volume, T is temperature, a is a 

constant depending on the conditions at the grain boundary, 

is the shear modulus dynes cm 

= 2.23 x 10 cm . At the critical stress, E~ = E 

p 

and Weertman gives a' 

G' 

-12) 

. 
Then 

12 -2 

which is inversely proportional to grain size and is listed in 

Table 1. Now if we assume Herring-Nabarro creep, we can solve 

the convection problem and estimate the actual stresses in the 

cell from the relation 

where U is a typical velocity i:: t he  cell and is the radius. 

These are listed in the last column of Table 1 for a typical 

cell. You can see that except for model 1, Herring-Nabarro 

creep is at least self consistent. That is, the driving stress 

is less than the critical stress. 

My second point is that even if the critical stress is 

exceeded, Herring-Nabarro creep probably leads to an upper 

bound for the temperature in the moon's interior. This is 
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because dislocation glide predicts higher creep rates than 

Herring-Nabarro at stresses above critical. Thus a convection 

cell in which non-newtonian dislocation glide dominates could 

be expected to have higher material velocities than the cor- 

responding newtonian Herring-Nabarro cell and heat would he 

removed from the interior more efficiently. 

My second assumption is that the heat sources in the moon 

are uniformly distributed. This essentially means that the 

moon is taken to be undifferentiated. This may not be true 

today but may be reasonable during the early history of the 

moon. A subsidiary part of this assumption is that the moon 

started out with an initially uniform temperature. The validity 

of this assumption is not well understood (R. Reynolds, per- 

sonal communication) and the problem of the instability of any 

general initial temperature profile has not yet been solved. 

The third assumption is that the elasticity of the moon 

serves only to ensure a rigid outer boundary condition. Most 

seismic and volcanic activity in the earth appears to be the 

result of the breaking up of the cold elastic outer rind and 

the rubbing together of the various pieces. However, the 

surface to volume ratio for the moon is much larger than for 

the earth. Thus for equal heat generation per unit volume, 

the outer elastic layer is much thicker on the moon than the 

earth. Lunar convection is confined to the deep interior and 

there is no seismic or visual evidence for terrestrial type 

tectonic processes which would accompany the breaking up of 
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the moon's outer shell. 

Fourthly, I assume that I can ignore all pressure effects 

in the moon. This is not strictly valid. However the pressure 

at the center of the moon corresponds only to a depth of 125  km 

in the earth. Thus the strong pressure effect on viscosity 

which greatly stiffens the lower mantle (Turcotte and Oxburgh, 

1969a) in the earth is not very important in the moon. The 

adiabatic temperature rise in the moon roughly cancels the pre- 

sure effect on viscosity. (Turcotte and Oxburgh, 1969b). 

Finally, 1 assume that all other material properties such 

as heat diffusivity, thermal. eupansic?n coefficient and so on, 

are constant. The probable variations in these quantities are 

small and are thus of secondary importance compared to the 

.*.! ,Lacosic,L~. c1 I have adGpted the values given by Turcotte an6 

Oxburgh (1969b). 

111. THERMAL STABILITY OF THE LUNAR INTERIOR 

The thermal stability of a fluid system is governed by 

a non-dimensional quantity called the Rayleigh number. In an 

internally heated, self-gravitating sphere with a rigid outer 

boundary, the Rayleigh number is 

4 c r p 2 G Q r 6  

ck2 TI 
Ra =(+) 

where a = 3 x 10T5(cgs) is the coefficient of thermal expansion, 



7 c = 1.34 x 10 

rate, G is the universal constant of gravitation, k = is 

is the specific heat, Q is the volume heating 

the heat diffusivity, TI is the viscosity, p is the average 

density, and r is the radius. If the viscosity is constant 

in the sphere and the Rayleigh number is less than 8040  

(Backus, 1955) the system is stable; there is no motion and 

the radial temperature profile will be the "conduction" solu- 

tion shown in Figure 2 .  

Now suppose we calculate the Rayleigh number for various 

spherical regions concentric with the center of the moon. The 

viscosity is derived using the conduction solution temperature 

at the outer boundary of each sphere. This gives a minimum 

estimate for the actual Rayleigh number of the system. Since 

the conduction solution is hotter inside the sphere than on 

its boundary the average viscosity in the region is lower than 

the viscosity at boundary. Figure 1 shows how the Rayleigh 

number varies with radius for three different estimates of the 

heating rate. The curves are actually labeled with the tem- 

perature gradient at the surface of the moon because it is es- 

sentially an observahlewhich can be estimated from magnetic 

measurements (C. Sonett, personal communication) and which is 

linearly related to the heating rate. The range of gradients 

shown roughly spans those presently considered reasonable. AS 

you can see the Rayleigh number quickly increases to a value 

greater than critical as we decrease the radius. This is be- 

cause the exponential drop in viscosity greatly outweighs the 

decrease in Rayleigh number due to the r6 dependence. The 
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highly unstable nature of an undifferentiated lunar interior 

. 
*. 

is clearly evident. All the viscosity relations considered 

lead to the same conclusion. The question seems to be not 

whether the interior is thermally unstable but how big the 

unstable zone is. 

IV FINITE AMPLITUDE CONVECTION 

If the Rayleigh number is significantly greater than the 

critical value of 8040 ,  finite amplitude convective motions 

will considerably alter the temperature structure of the cell. 

The spherically averaged temperature profile for a cell with 

constant viscosity is also shown in Figure 2. We get an es- 

sentially isothermal core and a thin-thermal boundary layer. 

Note that the outer boundary of the cell is at R‘. 

The temperature drop across the cell relative to the con- 

duction solution temperature drop is measured by the number M 

introduced by Roberts (1967). Tozer (1967) estimates M from 

experimental results for a fluid with a linear 

L~iutJc&aLuL~ p A u L l A & .  This is - . - f i h - h ’ * v  pLuYaUAy a reasonable zon~.czztisn 4.. -...--e L..- 1 

approach in the earth where the convecting layer in the upper 

mantle is so thin (due to the pressure effect) that the con- 

duction solution gradient and gravity are nearly constant across 

the layer. In the moon, However, the entire interior of the 

moon convects and the conduction solution is parabolic. The 

temperature gradient and the gravitational acceleration both 

approach zero at the center of the moon. This has a stabilizing 
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effect which will reduce the efficiency compared to the plane 

Rayleigh-Benard cell. I have therefore used the numerical 

results by Baldwin (1967) for the first axisymmetric mode in 

an internally heated, self-gravitating sphere. M is plotted 

as a function of Rayleigh number in Figure 3 .  It is 1 up to 

the onset of instability and then monotonically decreases. 

The numerical results go up to a Rayleigh number of 1.5 x 

and I have extrapolated them to higher Rayleigh numbers using 

Baldwin's assymptotic results as a guide. 

Now of course a convection cell in the moon does not have 

constant viscosity. However, if the temperature profile in 

Figure 2 existed in the moon, the temperature dependence of the 

viscosity would be important only in the boundary layer where 

fortunately the fluid velocity is small. Therefore I have as- 

sumed that the parameter M for the lunar problem can be eval- 

uated from the constant viscosity theory using the value of the 

viscosity in the isothermal core. 

I have examined this assumption experimentally. An oil 

with a temperature dependent viscosity was placed between 

horizontal plates and heated from below and cooled from above. 

This configuration has a thermal boundary layer at each plate 

and the mainstream temperature is the average between the two 

plates. The Rayleigh number of the system is based on the vis- 

cosity at this average mainstream temperature. For a total 

viscosity variation in the cell up to at least an order of mag- 

nitude and Rayleigh numbers up to at least lo5, there is no 
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observable difference in heat transport at any given Rayleigh 

number between variable and constant viscosity cells. This 

strongly supports the use of the constant viscosity results 

to estimate the heat transport in a temperature variable vis- 

cosity cell. 

Finally, we need a criterion to determine the preferred 

radius of the convection cell. This problem is discussed 

in some detail by Tozer (1967) who concludes that the absolute 

temperature of the core should be minimized. 

that a variational principle exists for the problem and as 

Roberts (1966) points out, a rigorous basis for such a prin- 

ciple is probably unlikely. However, minimizing the core tem- 

perature is probably a reasonable first approximation. 

This presupposes 

V INTERNAL TEMPERATURE 

Even with the minimum temperature criterion, calculation 

of the core temperature is not completely straightforward. If 

Tc is the conduction solution temperature at the center of the 

moon and To is the temperature at the outer boundary of the 

cell, the core temperature is 

T = To t M(Tc - To) 

We want to find the cell which minimizes T with respect to 

variations in the cell radius. Differentiating with respect to 

r gives 
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Nowever, a problem arises in the calculation of 

If Ra is derived from the viscosity at the core temperature T 

and the outer radius of the cell, R, it is easy to show that 

T decreases monotonically with increasing R. Thus the minimum 

T occurs when R is the radius of the moon. However, because 

of the extremely large viscositi; iiicrease in the thick Sowidary 

layer of this cell and the increasing effect that elasticity 

must have near the lunar surface it seems likely that the radius 

should be less than the lunar radius. Thus the lunar radius 

cell gives an absolute minimum estimate for the core temperature. 

If, on the other hand, R is evaluated from the viscosity at 

the boundary temperature To, there is a well defined cell radius 

with - aT - - 0. ar 
of this cell will be considerably higher than the boundary tem- 

perature at which the viscosity was evaluated, this cell's core 

temperature represents an extreme upper bound. The compromise 

between these extremes is to evaluate the Rayleigh number using 

the viscosity at the core temperature T and the radius of the 

isothermal core (the cell radius minus the boundary layer thick- 

a 

However, since the temperature in the mainstream 

ness).This maybe reasonable since the scale of the velocity f i e l d  
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should be slightly reduced by the viscosity increase in the 

boundary layer. 

The actual calculation is done by first finding the cell 

which gives the extreme upper bound described above. A new 

core temperature is then taken to be the temperature at the 

outer boundary of this cell (i.e. the original TO) and the 

new To is calculated from this new core temperature using the 

M for the preferred upper bound cell. =will aT then no longer 

be quite zero. However it can be made zero by an iteration 

which results in raising the core temperature by about 1%. 

Except for this final iteration, this calculation is the same 

as used by Tozer (1967) although the justification is rather 

different. The three temperature estimates for a fixed heating 

rate and all five viscosity models are given in Table 2. The 

most probable temperature turns out to be a rough mean between 

the extremes. The average terrestrial heating rate used in this 

table means that the moon h a s  the same radioactive heat genera- 

tion per unit volume as the earth would have if the observed 

surface heat flow were due to uniformly distributed sources 

within the earth. 

The probable core temperature versus surface temperature 

gradient for three of the viscosity models are plotted in 

Figure 4 .  The first thing to notice about these results is 

that the choice of viscosity model has a much larger affect on 

the core temperature than the heating rate. 

rate implies almost doubling the conduction solution temperature 

Doubling the heating 
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TABLE 2. Internal temperatures (OK) in a convecting Moon with 
average terrestrial heat generation. 

Viscosity Model Minimum 
(Table 1) 

1 1320 

2 

3 

4 

5 

1090 

1152 

1320 

1530 

Probable 

1578 

1321 

1387 

1578 

1815 

Maximum 

1963 

1580 

1589 

1820 

2083 
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at the center of the cell. However it only means about a lOOOK 

change in the convection solution temperature. 

stabilization of the convection zone temperature is perhaps the 

most important result of planetary convection. It is not the 

heating rate that determines the thermal state; it is the rheology, 

This powerful 

What happens physically is that as you try to heat up the cell 

by increasing the heating rate, the viscosity drops, causing an 

increase in convection efficiency which in turn carries away the 

extra heat you added. This is probably a very general property 

of temperature dependent creep which would manifest itself even 

for a non-newtonian creep mechanism. 

The other point I want to make with figure 4 is that all 

the temperatures are significantly below the solidus, Models 

2 and 3 are in fact within the range considered likely from the 

magnetic results(P. Dyal , personal communication). This mil- 

litates against general melting of an initially cold moon. 

However, local melting may occur as is shown in Figures 5 and 

7. 

Figure 5 shows the actual radial temperature profile for 

the first axisymmetric mode along the upwelling axis, the down- 

welling axis and in the equitorial plane. The equitorial pro- 

file is equal to the spherically averaged profile. The temper- 

ature drops across the preferred cells are generally about 150 

to 250OK. Thus the drop shown in Figure 5 is a rough lower 

bound. YOU can see from this figure that within the main stream, 

the deviations from the isothermal state are small. But at the 

inner edge of the boundary layer over the upwelling plume, a 
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hot peak forms. 

convection with internal heat generation. Material in contact 

with the cold outer boundary becomes cooler as it moves toward 

the downwelling plume and is at its coldest and densest as it 

begins its descent into the interior. As soon as the material 

leaves the immediate vicinity of the boundary, however, its 

internal heat generation causes it to begin heating up again. 

As the material rises in the warm plume, its radial velocity 

continuously decreases, Thus the total heat generated in .the 

This is a general result of finite amplitude 

material per unit change of radius steadily increases. This 

causes the temperature to rise rapidly as the material approaches 

the boundary. 

nation point above the rising plume if it were not for the 

increased role of conduction in the boundary layer. The max- 

imum material temperature would be expected to occur at the 

edge of the boundary layer as is in fact seen in figure 5 .  

There would be a thermal catastophe at the stag- 

If the temperature in the hot spot rises above the solidus, a 

lenticular partially melted cap will form over the upwelling plume 

as is shown schematically in Figure 6. The probability of the 

formation of a melted cap is somewhat enhanced by the effect of 

pressure on the solidus as is shown in Figure 7 .  The solidus 

in this figure is for the pyrolite moon given by Ringwood (1970). 

The division between the mainstream and boundary layer in the 

cells shown occurs almost precisely at the break in slope be- 

tween the conduction solution and core temperature in this 

figure. The core temperatures include the adiabatic gradient 

plus the minimum rslperadiabatic gradient for marginal stability 
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in the preferred cell. 

The rise in temperature in the hot spot relative to the 

core temperature is essentially limited by the magnitude of the 

temperature drop from the center to the outer boundary of the 

cell. Therefore, since viscosity models 2 and 3 have a temper- 

ature drop of 200 to 250°K and require hot spots 250 to 300°K 

warmer than their cores, these models would probably not have 

a partially melted cap unless the solidus were 100°K lower. 

On the other hand, it seems fairly certain that model 4 would 

have a melted cap since its average profile approaches within 

l O O O K  of the solidus. Finally, it is clear that model 5, which 

represents an upper bound, will have a fielted zoiie. Hcjwever, 

as figure 5 shows, there is a cold region over the downwelling 

which will probably pull the temperature there below the solidus. 

Thus even in model 5 the melting would probably be confined to 

one hemisphere. 

VI Lunar Evolution: Initially Cool Moon 

As I remarked earlier, the general time dependent problem 

of the onset of finite amplitude convection has not been solved. 

The picture is further complicated in the moon by the fact that 

the heat production 4 . 6  billion years ago may have been as much 

as an order of magnitude larger than at present. This initial 

heating rate and its early decay depends critically on the rela- 

tive abundances of k4* and U 235 (Phinney and Anderson, 1967). 

The present rate probably depends more on U 238 and Th 232 . 
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However a qualitative picture of the early lunar evolution 

can be constructed and compared with our present knowledge 

of the moon. 

The early development of the time dependent conduction 

solution involves an almost uniform core temperature with a 

steep temperature gradient only near the outer boundary. Be- 

cause of the rapid change of viscosity, the maximum stable 

temperature gradient drops sharply with increasing temperature. 

At 1200 - 1500°k, which should be reached in about one billion 
years (Phinney and Anderson, 1967), the viscosity can only 

stabilize a temperature drop of less than a few degrees in a 

cell with radius greater than 1000 km. This is clear because 

the operating Rayleigh numbers of the preferred cells discussed 

in the last section are orders of magnitude larger than the 

critical value of 8 0 4 0  (see Figure 8 ) .  The outer part of the 

moon where the thermal gradient is highest would become unstable 

first but the instability would quickly spread to the entire 

interior. 

Once convection begins it will dominate all other heat 

flow processes and the system will evolve towards a stable con- 

vection solution. If this is accomplished without any melting, 

differentiation in the lunar interior would be by the slow process 

of diffusion. The convection cell would still be operating 

although not necessily in the first mode and might support 'the 

moon's dynamical ellipticity as proposed by Runcorn (1967): The 

initial conditions would be long forgotten: the present thermal 
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state would be controlled by the rheology and such features 

as the maria would have to be the result of external heating. 

However geochemical evidence points towards partial melting 

at some depth inside the moon (Ringwood, 1970). Furthermore, 

at the time of convection onset, the heat production would still 

be two or three times the present rate. Thus the initial con- 

vective equilibrium temperature may be more than a hundred degrees 

higher than discussed in the last section. This would greatly 

enhance the chances of forming a partially melted zone unless 

non-newtonian effects and small grain size and activation energy 

substantially increase convective heat transport compared to the 

models considered here. General melting would still be unlikely 

although model 5 in Figure 7 could be expected to partially melt 

much of the moon at shallow to intermediate depths. 

The formation of the partially melted zone alone would 

probably have little affect on the convection cell. However, 

if the melt can percolate to the lunar surface through fissures 

such as might be produced by the large impacts which created 

the ringed maria, the situation may be quite different. To 

begin with,radioactivity would be preferrentially removed with 

the melt. This means that the heat source in the cell would 

decay. This would presumably continue until the hot spot no 

longer penetrated the solidus and would perhaps eventually lead 

to cell death. The time scale for this process is likely to be 

several times the cell overturn time. The velocity of the center 

of typical cell is plotted versus surface gradient in Figure 8.  
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At 4O/km, the velocities are considerably less than discussed 

by Turcotte and Oxburgh (1970) and imply a cell overturn time 

T = nR/U of about 5 x 10 years. Thus the time of strong con- 7 

vection and the partially melted zone - several hundred million 

years after onset - agrees roughly with the age of the maria. 
Another interesting point is that as the heating rate de- 

creases, partial melt over the downwelling will disappear and 

the depth to the partially melted zone over the upwelling will 

increase. This latter point is also illustrated in Figure 8 .  

This implies an age for mare on the lunar farside similar to 

the oldest mare on the near side and a significaht increase 

with time of source depth for nearside lavas. This probably 

would have geochemical implications which could be tested. 

I would also like to point out that the first axisymmetric 

mode has the highest growth rate and is therefore the most 

likely to exist initially. Consequently differentiation would 

essentially be a one hemisphere process. This would permanently 

shift the center of mass of the moon along the axis of upwelling. 

This shift would persist after the cell had decayed or died and 

the upwelling axis would become the axis of minimum moment of 

inertia. Decay of the l u n a r  angular momentum by tidal friction 

and spin-orbit coupling would then eventually leave the moon 

with the convection cell axis aligned with the earth-moon axis. 

Finally, the question of whether a convection cell still 

exists in the lunar interior is very difficult to answer. The 

structure of the lunar gravitational field seems the most useful 
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tool at present. 

are theoretically useful. But it is unlikely that measurements 

in the near future will be good enough to distinguish the subtle 

differences between continuing convection and the asymmetric 

heat flow created by the asymmetric differentiation. On the 

other hand, measurement of the heat flow through the lunar far- 

side either directly or by indirect 

Heat flow and electrical conductivity structure 

electro-magnetic methods 

would be a very useful first order check of the convection picture 

of lunar evolution. 

VI1 Other Initial Conditions 

The minor, but distinct presence of anorthosite in lunar 

samples (Wood, et al., 1970) has lead to the assumption that 

the lunar highlands represent an anorthositic lunar crust 

(i.e. Ringwood, 1970). The fact that the crater density is 

higher for highlands than the mare is interpreted to indicate 

a greater age for the highlands. In fact this anorthositic 

crust may be the result of high temperatures and consequent 

melting at the lunar surface at the time of the moon's formation. 

These high temperatures may either extend into the lunar interior 

or decrease with increasing depth. 

If the moon is completely molten, the viscosity will be 

so low that the sharp temperature gradient which will form at 

the outer boundary will become unstable. This instability will 

quickly  propogate to the interior. For a viscosity of the order 

of lo1' poise (as compared to 1021 poise for the solid convection 



in this paper), velocities of the order of 10 -2 cm/sec are not 

unreasonable, 

at first and then more slowly as the outer part of the moon, 

the deep interior and finally intermediate depths solidify. 

The internal temperature will drop very rapidly 

The 

partially melted cap region over an upwelling will be the last 

melt and from then on the evolution of the lunar interior will 

be indistinguishable from an initially cold moon. 

If initially very high temperatures exist only near the 

lunar surface, convective instability limited to this zone will 

cause it to freeze. 

interior until radiogenic heat has raised the internal temper- 

ature nearly to the solidus and locally reversed the initial 

stable temperature gradient. Again instability will begin at 

shallow to intermediate depths. 

into the deep interior will be slow because it is necessary to 

wait until radioactive heating has reduced the interior viscosity 

sufficiently. If the initial central temperature is the same 

as the initial temperature of a cold moon, convection throughout 

the l u n a r  interior occurs only slightly earlier than the time 

of convection onset in the initially cool moon. 

It should be clear from this discussion, that from the point 

Convection will not start in the deeper 

Propogation of the instability 

of view of the present thermal state of the lunar interior and 

its evolution for the past three billion years, the question of 

whether the moon was initially hot or cold is largely irrelevant. 

Convectively unstable systems forget their initial condition. 
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The geochemisty and age of the lunar crust provides the appro- 

priate data for determining the initial state of the moon. 

VI11 Concluding Remarks 

Because of the approximate nature of the assumptions and 

calculations in this paper, the specific results should be con- 

sidered very preliminary and treated with an appropriate amount 

of caution. In order to improve this situation, high priority 

should be given to: 

1. Experimentally investigation of the creep of rocks at 

pressures of 10 to 50 kb, non-hydrostatic stresses from 0.1 to 

100 bars, and temperatures greater than 750Ok. 

2 .  Evaluation of the effects of non-newtonian flow on 

convective heat transport. 

3 .  Theoretical studies of the time dependent onset of con- 

vection. 

4 .  Determination of heat flow through the surface of the 

earthside and farside of the moon. Barring a manned expedition 

to the lunar farside, considerable effort s h ~ u l d  he made tc? 

establish a surface magnetometer near the center of the farside 

and a series of magnetometer bearing lunar orbiters. 

Finally, I want to reiterate the main point illustrated in 

this paper: the thermal state of an unstable planetary interior 

is strongly dependent on the rheological properties of the 

planetary material. 
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Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

The Rayleigh number versus the radius of a spherical 
cell concentric with center of the moon. The curves 
are labelled with the surface temperature gradient 
of three possible conduction temperature profiles. 
This gradient is linearly proportional to the internal 
heating rate. The viscosity is assumed constant in- 
side the cell and is evaluated at the conduction so- 
lution temperature at the cell's outer boundary. 
The viscosity model is number 4 in Table 1. 

The spherically averaged temperature prorile in a 
convecting moon of radius a. R' is the radius of the 
convecting zone and R'-R is the thermal boundary layer 
thickness. The solidus is arbitrary 

The convective efficiency parameter M versus Rayleigh 
number after Baldwin (1967). 

. 

The steady state core temperature in a convecting moon 
versus the surface teEperature gradient. This gradient 
is linearly proportional to the internal heating rate. 
The numbers labelling the curves correspond to the vis- 
cosity models in Table 1. 

The actual radial temperature profiles along the up- 
welling axis ( 8 = 0 )  , the downwelling axis (e=n)and in 
the equitorial plane (6=1~/2)for the first axisymmetric 
convective mode in a sphere. The profile locations 
appear as 0-A, 0-A' and 0-B resgectively in Figure 6. 
The Rayleigh number is 1.5 x 10 . The temperature 
scale is arbitrary and can be stretched. The small 
arrows indicate the theoretical edge of boundary 
layer. 

schematic pictlrre of the first axisymmetric convection 
cell in the moon showing the outer rigid shell, the 
temperature boundary layer, the possible zone of partial 
melt and the approximate stream lines. 

The spherically averaged temperature profile in the moon 
for four viscosity models and the averaqe terrestrical 
heating rate. 
viscosity models in Table 1. The knee in the curve be- 
tween the conduction solution and the convective core 
temperature occurs at the inner edge of the thermal 
boundary layer which corresponds to the radius R in 
Figure 2.  
adiabatic gradient for marginal stability have been 
added to the core temperature. The solidus is for the 

- 

The labels on the curves oorrespond to the 

The adiabatic gradient and the minimum super- 
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Ringwood's (1970) pyrolite moon. The change in 
temperatures at the knee of the curve with heating 
rate is shown in Figure 4 .  

Fig. 8 The velocity, U at the center of the moon, the Rayleigh 
number, Ra, and the thickness of the outer shell, 
(here defined as the rigid shell plus the thermal 
boundary layer) versus heating rate for viscosity model 
3 in Table 1. 
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